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Abstract— This paper introduces a novel framework for
estimating the motion of a robotic car from image information,
a scenario widely known as visual odometry. Most current
monocular visual odometry algorithms rely on a calibrated
camera model and recover relative rotation and translation by
tracking image features and applying geometrical constraints.
This approach has some drawbacks: translation is recovered
up to a scale, it requires camera calibration which can be
tricky under certain conditions, and uncertainty estimates are
not directly obtained. We propose an alternative approach
that involves the use of semi-parametric statistical models as
means to recover scale, infer camera parameters and provide
uncertainty estimates given a training dataset. As opposed
to conventional non-parametric machine learning procedures,
where standard models for egomotion would be neglected, we
present a novel framework in which the existing parametric
models and powerful non-parametric Bayesian learning proce-
dures are combined. We devise a multiple output Gaussian
Process (GP) procedure, named Coupled GP, that uses a
parametric model as the mean function and a non-stationary
covariance function to map image features directly into vehicle
motion. Additionally, this procedure is also able to infer joint
uncertainty estimates (full covariance matrices) for rotation and
translation. Experiments performed using data collected from
a single camera under challenging conditions show that this
technique outperforms traditional methods in trajectories of
several kilometers.

I. INTRODUCTION

This paper deals with the estimation of vehicle motion
from image information, a problem commonly known in
robotics as visual odometry. Accurate localization is a key
aspect in most autonomous tasks, and visual systems provide
several benefits that can lead to more robust and reliable
results. Wheel encoders are unreliable due to slippage and
terrain irregularities, inertial sensors (IMUs) suffer from
velocity error accumulation, and GPS is limited to open
environments. Visual information is highly descriptive, it
is not restricted to any particular locomotion method, it is
capable of a full 6 DoF motion estimation, and cameras
are in overall inexpensive, compact and with low power
consumption.

The vast majority of current visual odometry techniques
address this problem geometrically [1], [2], using a calibrated
camera model to calculate the camera motion hypothesis that
best explains the optical flow values obtained from pairs of
frames. Stereo [3], [4], [5], [6] and monocular [7], [8], [9]
configurations have been successfully applied over the years
in several areas, such as autonomous aircrafts [6], underwater
vehicles [10], space exploration [11] and indoor/outdoor

terrains [12], [7], [4], [13], [14]. Stereo configurations use a
multi-camera array (or a moving camera) to capture several
images simultaneously, and so are capable of recovering
3D feature locations directly from the binocular disparity
between images. Monocular configurations, on the other
hand, use a single camera and both feature triangulation
and camera motion need to be estimated simultaneously,
a scenario also referred to as ”structure-from-motion” [15].
One well-known limitation of monocular visual odometry is
the inability to recover absolute scale, a problem addressed
in [9] for the special case of nonholonomic constraints and
in [16] for a ground plane assumption.

Most current systems employ RANSAC [14] to test dif-
ferent camera motion hypothesis and elect the one with the
highest probability of representing the optical flow values
at hand. This process is usually followed by a global opti-
mization method such as bundle adjustment [17], [18]. Self-
calibration algorithms [19], [20] are also commonly used,
as a way to eliminate the need for manual calibration. The
incorporation of uncertainties to the final estimation leads
to fusion of visual odometry data with other sensors, such
as IMU or GPS [21], [12], or the extension to the SLAM
framework [22].

Over the last few years, machine learning algorithms have
been gaining territory in visual odometry applications as a
way to eliminate the need for geometrical models and camera
calibration. Machine learning techniques use training data,
obtained from a different and independent sensor, to infer,
in a supervised manner, the underlying function mapping
optical flow to vehicle motion. One of the key benefits of
this approach is the ability to infer scale directly from a
monocular configuration, by exploring structure similarities
between frames and how optical flow varies throughout the
image. In [23] the authors use a KNN-learner voting method
to estimate changes in pose, with each learner taking as input
the average of the sparse optical flow in a grid-divided image.
A similar idea is explored in [24], where a constant pixel
depth is assumed and the EM algorithm, in conjunction with
an extension to PPCA, is used to learn a linear mapping
between incremental motion and optical flow.

This paper is an attempt to combine both approaches
into a single framework, where a geometrical model is
used to obtain an initial estimate of vehicle motion that is
further refined using ground-truth data during training. This
semi-parametric learning procedure is the main contribution
of this paper over previous works by the authors [25],
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(a) Initial SIFT matches (b) SIFT matches after RANSAC (c) Optical flow panel

Fig. 1. Visual information extracted from pairs of frames.

[26], where no prior knowledge of the camera system is
assumed. The Coupled GP methodology is proposed and
this geometrical model is incorporated as the mean function
m(x), usually assumed to be zero. We use the 7-point
RANSAC algorithm to elect the most probable egomotion
hypothesis based on sparse optical flow information, and the
resulting fundamental matrix is combined with calibration
parameters to recover vehicle motion up to a scale, as shown
in [1]. Although these parameters can be provided manually
using traditional calibration methods, here we obtain them
automatically alongside with the GP hyperparameters, so
initial calibration of the visual system is still not necessary.

The rest of this paper is divided as follows: Section II
explains the process of extracting information from images
and the optical flow parametrization into the input vector.
Section III starts with an overview of Gaussian Processes,
describes the Coupled GP extension and then introduces the
geometrical model used and how it is incorporated into the
GP framework. Section IV presents results obtained using
real data in ground and aerial applications, and Section V
concludes and discusses future work.

II. OPTICAL FLOW PARAMETRIZATION

Our method uses sparse optical flow information obtained
from consecutive pairs of frames during vehicle navigation.
A histogram filter was initially applied to each frame to
account for global luminosity changes. Due to its robust-
ness and invariance properties, the initial feature extraction
and matching is performed using the SIFT algorithm, as
described in [27], although any other similar method could
be readily applied.

Fig. I shows the three stages of optical flow parametriza-
tion. Examples of initial SIFT matches are presented in Fig
1(a), where it is possible to see a substantial number of
false matches. These matches are filtered using the RANSAC

algorithm, which is a probabilistic tool that elects the pre-
dominant camera motion scenario and discards matches that
do not comply to this constraint. The resulting inlier sets are
presented in Fig. 1(b). This step is also useful in minimising
the impact of dynamic objects in the environment, since their
optical flow will not be consistent with the rest of the image
(assumed static).

The final stage of optical flow parametrization, depicted
in Fig. 1(c), consists in dividing the image into fixed-size
regions and averaging the optical flow information inside
each one of these regions. Any featureless region is assumed
to have the average optical flow value of its neighbour
regions. This resulting optical flow panel is then reorganised
into a vector x with dimension 2 ∗w ∗h, where w and h are
respectively the number of regions the image was divided
horizontally and vertically. This vector will serve as input
for the Coupled GP framework described in the next section.
This procedure is necessary for two reasons: 1) Two different
pairs of images will most certainly generate matching sets
of different sizes, thus changing the dimension of x and the
nature of the underlying function f(x). 2) The coordinate in
which each optical flow estimate was obtained is important
because different areas react differently to camera motion.
By organising the sparse optical flow information obtained
from the SIFT features into a panel, we are able to fix both
the dimensionality of the problem and maintain its spatial
structure.

III. MOTION ESTIMATION

This paper proposes the union of a non-parametric
Bayesian inference method, the Gaussian Process [28], with
a parametrical geometric model defined by the camera con-
figuration. The visual odometry problem, from the machine
learning perspective, can be seen as a supervised regression
problem, where an input vector x ∈ <D, composed of optical
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flow information extracted from a pair of frames, is mapped
to an output y ∈ < containing the corresponding vehicle
motion. A training dataset Λ = {xn, yn}Nn=1, composed of N
data points obtained from a different and independent sensor,
is used to optimize the parameters of a positive-definite
kernel k(x, x′) that characterizes the relationship between
inputs.

A. Overview of Gaussian Processes

Gaussian Processes (GPs) [28] are a non-parametric tool
in the sense that they do not explicitly specify a functional
model between inputs and outputs. A GP can be thought of
as a Gaussian prior over the function space mapping inputs
to outputs. It is characterized by a mean function m(x) and
a covariance function k(x, x′),

f(x) ∼ GP(m(x), k(x,x′)). (1)

Most traditional implementations assume m(x) = 0 with-
out loss of generality by scaling the data appropriately, and
k(x, x′) is a positive-definite kernel (covariance function)
whose coefficients are optimized to maximize a certain
objective function (usually the marginal likelihood or leave-
one-out cross validation). Due to its non-stationary properties
and ability to model sharp transitions and non-linearities, we
use here the neural network covariance function, as described
in [29]:

k(x, x′)=σ2
f arcsin

 2x̃T
Σx̃′√

(1+2x̃T
Σx̃)(1+2x̃′

T
Σx̃′)

, (2)

where Σ is a diagonal matrix of length-scales, σ2
f is a signal

variance used to scale the correlation between points and
x̃ = {1, x} is an augmented vector. Inference for a single
test point x∗ given Λ involves the computation of the mean
f(x∗) = f∗ and variance V(f∗), calculated as

f∗ = k(x∗, X)T [K(X,X) + σ2
nI]−1y (3)

V(f∗) = k(x∗, x∗)−
− k(x∗, X)[K(X,X) + σ2

nI]−1k(x∗, X), (4)

where σ2
n quantifies the noise expected in the observation y

and K is the covariance matrix, with elements Kij calculated
based on the covariance function k(xi, xj).

B. Coupled GPs

In 3D navigation, six parameters (or tasks) are necessary to
describe vehicle motion (the linear velocities on the x, y and
z axis and the angular velocities γ̇, β̇ and α̇ in Euler angles).
For the sake of simplicity, in this section we will focus on 2D
navigation, where only two parameters (forward and angular
velocities) are necessary, and the extension to a 3D scenario
is achieved by the incorporation of all remaining tasks.
Traditional implementations of GPs usually assume a single
output, and multiple outputs are obtained using independent
GP models. However, since they are derived from the same
input data (the optical flow parameters discussed previously),
it is natural to assume that there are dependencies between

the outputs which, if explored, could lead to better results.
Alternative derivations [30] compute a single covariance ma-
trix containing observations from all tasks, but each inference
is still conducted independently. This paper uses a Coupled
GP [25], where all tasks are inferred simultaneously and a
full covariance matrix is estimated, representing the cross-
correlation between tasks.

First of all, the training dataset Λ is divided into Λ1 and
Λ2, where Λi = {x(i,n), y(i,n)}Nn=1 represents the training
data for task i. The new multi-task covariance matrix be-
comes

K = Kf ⊗Kx + Σn, (5)

where Kf is a 2 × 2 positive-definite matrix, Kx is a
2N × 2N covariance matrix between all the training points,
Σn is a diagonal matrix with noise values, and ⊗ denotes
the Kronecker product. The idea behind Kf is to model
the amplitude of correlations between tasks, thus allowing
dependencies to be naturally formed or discarded during
training. Kx is defined as

Kx =

[
K11 K12

K21 K22

]
, (6)

where

Kij =

 kij(xi,1, xj,1) . . . kij(xi,1, xj,N )
...

. . .
...

kij(xi,N , xj,1) . . . kij(xi,N , xN,N )

 (7)

and kij indicates the covariance function utilized. When i =
j the auto-covariance function is used as in Eq. (2), and
when i 6= j a cross-covariance function is used, derived from
the definition of a neural network function in which two
smoothing kernels are convolved to obtain a positive-definite
function that correlates multiple outputs:

kij(x, x′)=

arcsin

 2x̃T Σx̃′√
(1+2x̃T Σx̃)(1+2x̃′

T
Σx̃′)


(|Σi||Σj |)4

√
|Σi + Σj |

, (8)

where Σ = Σi(Σi + Σj)
−1Σj . The predictive mean vector

f∗ and covariance V(f∗) for a single test point x∗ are now
calculated as

f∗ = KT
s K

−1y (9)

V(f∗) = Kii(x∗, x∗)−KT
s K

−1Ks, (10)

where

Ks =



kf1,1k1,1(x∗, x1,1) . . . kf2,1k2,1(x∗, x1,1)
...

...
...

kf1,1k1,1(x∗, x1,N ) . . . kf2,1k2,1(x∗, x1,N )

kf1,2k1,2(x∗, x2,1) . . . kf2,2k2,2(x∗, x2,1)
...

...
...

kf1,2k1,2(x∗, x2,N ) . . . kf2,2k2,2(x∗, x2,N )


(11)

and
y = [y1,1, . . . , y1,N , . . . , y2,1, . . . , y2,N ]

T
. (12)

3484



The definition of Ks as a multi-column matrix, containing
the relationship between the test point x∗ and the training
points from all tasks, is the main contribution of Coupled
GPs over traditional multi-task GPs. This allows the simul-
taneous estimation of all components in the mean vector f∗,
along with a full covariance matrix V(f∗) containing cross-
dependencies between tasks.

C. Parametric Model

As stated before, most GP implementations assume
m(x) = 0, indicating no prior knowledge of the underlying
function to be inferred from training data. This is however
not the case in visual odometry, because it is possible to
obtain an initial estimation of vehicle motion using well-
established geometrical models [1]. These models are com-
monly used as a stand-alone solution to the structure-from-
motion problem [14], [9], [17], and the main contribution
of this paper is their incorporation into the GP framework,
creating a semi-parametric approach to visual odometry.

The new mean vector m(x) is obtained via triangulation,
based on a calibrated camera model and a set of matched
features (which is also used to estimate the optical flow that
serves as input for the CGP). If image features are assumed
to be static and their projections on both images are known
(Fig. 2), it is possible to use this information to constrain the
camera motion between frames and estimate translation and
rotation.

Fig. 2. Diagram of the geometrical constraints used to estimate vehicle
motion from OC to OC′ according to a matched feature M and its
projections m and m′ on each image.

The first step is the calculation of the fundamental matrix,
based on the inlier feature sets obtained in Sec. II. If uN

n=1 are
the normalized pixel coordinates (u, v, 1)T of all the N ≥ 7
inliers in a pair of frames, the fundamental matrix F is given
by the optimization of

u′TFu = 0. (13)

Examples of epipolar lines obtained from Eq. 13 are
presented in Fig. 3. The next step is the calculation of the
essential matrix E = CTFC, with C being the calibration
matrix defined as

C =

 lx s px
0 ly py
0 0 1

 , (14)

where lx and ly are focal lengths, s is the skew parameter
and px and py are the image center coordinates. These are
the camera intrinsic parameters, and the extrinsic parameters
(translation t and rotation R) are extracted from E by
identifying [1] the correct pair of projection matrices P1 and
P2. If P1 = [I|0], meaning that the first frame is aligned
at the center of the coordinate system, then P2 = [R|t]
indicates camera motion between frames. For the special
case of 2D navigation we assume that there is no lateral and
vertical vehicle motion, and no tilt or roll. In this scenario,
the only two remaining degrees of freedom are the linear v
and angular ω velocities, which together compose the mean
vector1 m(x) = {v, ω}. We define here v = |t| and ω as the
yaw component of R.

Fig. 3. Epipolar constraints during vehicle translation (left) and rotation
(right).

Inference for a single test point x∗ is now defined by Eqs.
15 and 16. By adding the mean function to f∗ we assure
that, as the testing sample x∗ deviates from the training
dataset Λ, the outputs converge to the results provided by the
geometrical model. As expected, the incorporation of m(x)
to the inference procedure does not change the estimation
of V(f∗), since the geometrical model does not provide any
measure of uncertainty.

f∗ = m(x∗) +KT
s K

−1 (y−m(x)) , (15)

V(f∗) = Kii(x∗, x∗)−KT
s K

−1Ks. (16)

D. Parameter Optimization

During the training stage, the covariance function coef-
ficients (the hyperparameters) are optimized according to a
cost function. Due to its ability to balance between model
complexity and data fit, we choose here the marginal likeli-
hood function, shown in Eq. 17 where ε = (y−m(x). In the
CGP framework these hyperparameters are composed of the
length-scales in Σ1 and Σ2, the noise values in Σn and the
correlation amplitudes in Kf . The optimization is conducted
using a combination of stochastic maximization (simulated
annealing) and gradient descent algorithms to reduce the
influence of initial conditions,

ζ=ln p(y|X)=− log(|K|)
2

− ε
TK−1ε

2
−N log(2π). (17)

However, the incorporation of a geometrical model into the
framework introduces a new set of parameters, the calibration

1For the general case of 3D navigation, the mean vector becomes m(x) =
{ẋ, ẏ, ẋ, γ̇, β̇, α̇}, where (ẋ, ẏ, ż) are the linear velocities in each axis and
(γ̇, β̇, α̇) are the angular velocities in Euler angles.
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(a) Laser-based Iterative Closest Point (ICP)
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(b) Structure From Motion (SFM) with manual scale adjustment
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(c) Coupled GP
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(d) Coupled GP + Geometrical Model

Fig. 4. Localization results obtained using different methods.

parameters present in C (focal lengths lx and ly , skew s and
image center coordinates px and py). Although manual cam-
era calibration could provide estimates for these parameters,
we propose their incorporation into the optimization process,
along with the CGP hyperparameters. The benefits of this
approach are two-fold: 1) It eliminates the need for camera
calibration, and if these parameters are available they can be
further refined. 2) Since the geometrical model is used only
as an initial estimate for the CGP inference, the actual values
of these parameters may differ from the ones provided by an
independent calibration.

IV. RESULTS

The proposed methodology was first evaluated in a 2D
scenario, using data collected from a ground vehicle navi-
gating in outdoor environments (both urban and off-road).
In this case only two tasks are necessary to describe vehicle
motion, decreasing the number of hyperparameters, computer
memory requirements and training time. The same methodol-
ogy was then extended to a 3D scenario, using data collected
from an unmanned aerial vehicle (UAV) flight over a deserted
area. During flight, the UAV is capable of moving in all six
degrees of freedom, which can be extrapolated to any generic
application of visual odometry.

A. Ground Vehicles

For the ground vehicle tests, a conventional car (Fig.
5) was modified to include a camera, a laser sensor and
a GPS system (used solely for comparison purposes). The
camera captured images at roughly 5 frames per second at
a 1152x758 pixel resolution, which were then downsampled
to 384x252 pixels. The reasons for this downsample are: 1)
to verify the robustness of the algorithm in low-resolution
cameras (marginally better results can be obtained with
higher resolution); 2) to speed up SIFT (or equivalent) feature
extraction and matching. During data acquisition the car
moved at speeds of up to 40 km/h and interacted with
pedestrians and other vehicles.

Fig. 5. Car used in experiments.
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(a) Urban testing dataset (b) Off-road testing dataset

Fig. 6. Localization results obtained using different methods (green dots are GPS information, red lines are visual odometry estimates and yellow circles
represent loop-closures.

The training dataset is composed of 2000 images acquired
in an urban environment. Ground-truth information was
obtained using the Iterative Closest Point (ICP) algorithm
[31] based on laser data, as depicted in Fig. 7. Because they
are incremental, these estimates are by themselves subject
to drift. Even though more precise results could be obtained
(i.e. by fusing laser and GPS information), the CGP approach
is in general capable of averaging over such errors due to
a large number of samples in the training dataset. This is
beneficial because it eliminates the need of high-precision
sensors during the training stage.
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Fig. 7. Training Dataset

The urban testing dataset is also composed of 2000
images, obtained using the same vehicle over a different
trajectory of roughly 2 km. For comparison purposes only,
localization results obtained from the same ICP algorithm
used previously on the training dataset are depicted in Fig.
4(a). Similar results obtained using the calibrated geomet-
rical model and manual scale adjustment are presented in
Fig. 4(b). As expected, both approaches suffer from error
accumulation due to drift, specially in rotation because of
smaller overlapping areas and higher sensitivity to angular
motion.

Fig. 4(c) shows the localization results obtained using the
CGP framework without the geometrical model, assuming
m(x) = 0. It is possible to see the GP’s ability to recover
scale, which is a non-trivial task in monocular configurations.
Even though less predominant, imprecisions in angular mo-
tion estimates still constitute the main source of accumulated
drift errors, mostly due to the lower number of sample
curves for training and smaller overlapping areas in the
image. In Fig. 4(d) the localization results obtained from
the CGP framework with the geometrical model (MCGP)
are presented. The calibration parameters were optimized as
hyperparameters with random initial guesses. Again, scale
is recovered up to a high degree of precision, and angular
motion errors are even less pronounced. We attribute this
improvement to the MCGP’s ability to ”fine-tune” the esti-
mates provided by the geometrical constraints, without the
need to fully model the underlying phenomenon as it is the
case when no geometrical model is used.
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Fig. 8. 3D localization results from the UAV dataset.

Finally, the proposed methodology was incorporated into
an Exactly Sparse Information Filter (ESIF) [32], taking
advantage of the probabilistic nature of Gaussian Processes
to explore the extension to a SLAM (Simultaneous Local-
ization and Mapping) scenario. This was possible because
the CGP framework is capable of providing a full covariance
matrix, containing both auto and cross-dependencies between
tasks. All vehicle position and corresponding uncertainties
are tracked over time, and a loop-closure algorithm was im-
plemented based on feature matching between frames. When
a certain area is revisited the ESIF uses this information to
retroactively decrease global uncertainty.

Localization results obtained using the same testing dataset
are presented in Fig. 6(a), where it is possible to see loop-
closures during the second pass over the left street and also
when the vehicle returns to the starting point. During the
third pass, the vehicle was facing the opposite direction, so
it was unable to match any images, resulting in a residual
misalignment in this area. The incorporation of information
from other sensors, such as GPS, could further improve the
results. We also tested this algorithm, using the same vehicle
and without further training, in an off-road environment of
roughly 3 km. This environment is composed mostly of trees
with the vehicle driving over grass, and the ESIF results are
depicted in Fig. 6(b). These results testify to the ability of the
proposed method to generalise over different environments.

A quantitative comparison of all localization methods
presented in this paper is shown in Table I, in terms of
Root Mean Squared Error (rmse) per frame. The ground-
truth for these comparisons was obtained using ICP estimates
integrated into the ESIF framework. As expected, ICP has the

lowest translational error, because distances can be measured
directly from a laser scanner. The standard CGP framework
performed better than the structure-from-motion approach
(composed solely of the geometrical model described previ-
ously), however the semi-parametric approach outperformed
both, especially on angular motion estimation, which is
arguably the main source of accumulated errors. Even though
small, these angular motion errors are accumulated in a few
frames since the vehicle mostly drives on a straight line.
The MCGP-SLAM approach was able to further decrease
rotational error, by eliminating drift misalignments during
loop-closure.

Method Trans. Error Rot. Error
(rmse) (10−2 m) (rmse) (10−2 rad)

It. Closest Point 2.92± 4.70 0.06± 0.14
Struct. Motion 9.75± 12.12 0.23± 0.16
Coupled GP 5.74± 8.18 0.07± 0.08

MCGP 5.12± 7.49 0.05± 0.07
MCGP-SLAM 5.98± 6.54 0.04± 0.07

TABLE I
LINEAR AND ANGULAR ERRORS

B. Aerial Vehicles
The data used during aerial vehicle tests was collected

from a UAV flying at speeds of up to 110 km/h and heights of
80-100 m. A camera pointing downwards was used to collect
images at a rate of 3 frames per second, and a fusion of GPS
and inertial data served as ground-truth information. This
scenario is specially tricky for a calibration-based method
due to the high altitudes, which create a lack of depth
perception in the ground plane and require a narrow field of
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vision from the camera. The lack of overlapping areas caused
by severe camera motion also difficults feature matching,
resulting in frame pairs with poor or non-existent optical
flow.

Fig. 8 shows the localization results obtained using differ-
ent methods. The black line denotes ground-truth informa-
tion, where it is possible to see the UAV’s overall motion
pattern of elongated rectangles with a slight translation
sideways. It is also possible to see that the structure-from-
motion algorithm (with manual scale adjustment, cyan line)
fails to correctly estimate vehicle rotation due to the difficul-
ties listed above, generating errors that rapidly accumulate.
However, these estimation errors are individually small and
the MCGP uses the structure-from-motion results as initial
guesses that are further refined by the CGP framework,
compensating for most of the residual drift.

V. CONCLUSION

We presented a technique to incorporate a parametric
model (the geometrical constraints from a camera) into a
non-parametric algorithm (the Gaussian Process), creating
a semi-parametric framework that benefits from both ap-
proaches. The simultaneous optimization of both the cali-
bration parameters and the hyperparameters eliminates the
need for prior calibration of the visual system, and if this in-
formation is available these parameters can be further refined
seamlessly. This technique is capable of recovering scale
in a monocular configuration, generalizing over different
environments without the need of further training, and the
estimation of uncertainties allow the use of results in filtering
and SLAM frameworks. While the training stage may take
up to a few hours, depending on the number of tasks and
random hyperparameter initialization, new inferences can
be computed at a rate of 10 Hz, thus being suitable for
real-time applications. The results presented here challenge
existing visual odometry algorithms given the magnitude of
trajectories in our experiments. Future work will focus on
different geometrical models, the incorporation of a geomet-
rical model into the covariance function, and the effects of
exchanging cameras after training.
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